

# SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

### MODEL QUESTION BANK( DESCRIPTIVE)

**Subject with Code :**Design and Analysis of Algorithms(18MC9122) Course & Branch: MCA

Year & Sem: II-MCA& II-Sem **Regulation:** R18

## <u>UNIT –I</u>

## **Introduction& Divide and Conquer**

| 1. a. Explain the properties of an algorithm with an example.                                            | [4M]  |  |
|----------------------------------------------------------------------------------------------------------|-------|--|
| b. Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step |       |  |
| count method.                                                                                            | [8M]  |  |
| 2.Write Divide – And – Conquer recursive Merge sort algorithm and derive the time complexity of this     |       |  |
| algorithm.                                                                                               | [6M]  |  |
| 3.a. Differentiate between Bigoh and omega notation with example.                                        | [6M]  |  |
| b.Distinguish between Algorithm and Psuedocode.                                                          | [6M]  |  |
| 4.a.Define time complexity and space complexity. Write an algorithm for adding n natural numbers and     |       |  |
| find the space required by that algorithm.                                                               | [7M]  |  |
| b. What are the different mathematical notations used for algorithm analysis.                            | [5M]  |  |
| 5. List out the steps that need to design an algorithm.                                                  | [5M]  |  |
| 6.Explain how many algorithms can you write for solving find the prime numbers. Compare which is the     |       |  |
| simplest and the most efficient.                                                                         | [8M]  |  |
| 7.a. Differentiate between Best, average and worst case efficiency.                                      | [6M]  |  |
| b.Explain Strassen's algorithm for matrix multiplication with the help of an example.                    | [6M]  |  |
| 8.a. Discuss the concepts of asymptotic notations and its properties.                                    | [7M]  |  |
| b. What do you mean by randomization?                                                                    | [5M]  |  |
| 9.Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms Understand   |       |  |
| and Selection Sort with example?                                                                         | [12M] |  |
| 10. a. What do you mean by dynamic programming?                                                          | [5M]  |  |
| b. Describe asymptotic notation.                                                                         | [7M]  |  |
| 11. Define Merge sort with example.                                                                      | [8M]  |  |
| 12. Describe Quick Sort with suitable example.                                                           | [8M]  |  |

## <u>UNIT –II</u>

## **Greedy Method and Dynamic Programming**

| 1. What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm           |       |  |
|-----------------------------------------------------------------------------------------------------------|-------|--|
| with suitable example.                                                                                    | [8M]  |  |
| 2. Explain how Matrix - chain Multiplication problem can be solved using dynamic programming with         |       |  |
| suitable example.                                                                                         | [12M] |  |
| 3. a. Why do we perform topological sorts only on DAGs? Explain                                           | [8M]  |  |
| b.Explain the applications of depth first search algorithm.                                               | [5M]  |  |
| 4. a. State the Greedy Knapsack Problem.                                                                  | [6M]  |  |
| b.Find an optimal solution to the knapsack instance n=4 objects and the capacity of knapsack m=15,        |       |  |
| profits (10, 5, 7, 11) and weight are (3, 4, 3, 5).                                                       | [6M]  |  |
| 5. a. Explain Recursive Binary search algorithm with suitable examples.                                   | [5M]  |  |
| b.Write Control Abstraction of Greedy method.                                                             | [7M]  |  |
| 6. a. Explain partition exchange sort algorithm and trace this algorithm for n =8 elements: 24,12, 35,    |       |  |
| 23,45,34,20,48.                                                                                           | [6M]  |  |
| b. Differentiate between greedy method and dynamic programming. [6M]                                      |       |  |
| 7. a. Explain the general principle of Greedy method and also list the applications of Greedy method.[6M] |       |  |
| b. Explain the Travelling sales man problem.                                                              | [6M]  |  |
| 8. a. Explain the greedy technique for solving the Job Sequencing problem.                                | [6M]  |  |
| b. What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost spanning          |       |  |
| tree and list some applications of it.                                                                    | [6M]  |  |
| 9. a. Write the algorithm to compute 0/1 Knapsack problem using dynamic programming and explain it.       |       |  |
|                                                                                                           | [7M]  |  |
| b. Explain the Single source shortest path problem with an example.                                       | [5M]  |  |
| 10. a.What is the time complexity of the Job sequencing with deadlines using greedy algorithm? [6M]       |       |  |
| b.State the principle of optimality. Find two problems for which the principle does not hold.[6M]         |       |  |
| 11. Briefly explain Multistage graphs with suitable examples?                                             | [5M]  |  |
| 12. Describe job scheduling with deadlines?                                                               | [5M]  |  |
|                                                                                                           |       |  |

#### UNIT -III

#### **Basic Traversal and Search Techniques, Back Tracking**

| 1. Explain any one application back tracking with example?                     | [8M] |
|--------------------------------------------------------------------------------|------|
| 2. Describe in detail 8-queens problem using back tracking?                    | [8M] |
| 3.Explain 0/1 knapsack problem by using backtracking with an examples?         | [7M] |
| 4.Briefly explain the optimal binary search trees with example?                | [7M] |
| 5. Describe in detail graph coloring using back tracking?                      | [8M] |
| 6. Explain 0/1 knapsack problem by using dynamic programming with an examples? | [8M] |
| 7. Explain DFS with suitable example?                                          | [5M] |
| 8. What is Spanning trees explain with suitable examples?                      | [6M] |
| 9. Describe Bi-connected components.                                           | [6M] |
| 10. Determine Sum of subsets problem?                                          | [5M] |
| 11. Explain techniques for binary trees?                                       | [7M] |
| 12. Discuss about Connected Components.                                        | [5M] |
| 13. What are the Techniques about Graphs explain it?                           | [5M] |
| 14. Explain Hamiltonian cycles with examples.                                  | [8M] |

#### **UNIT -IV**

#### **Branch and Bound, Lower Bound Theory**

- 1.Explain the general method of branch and bound?[12M]
- 2. Apply branch and bound to 0/1 knapsack problem and elaborate it?[8M]
- 3.3.Explain the method of reduction to solve TSP problem using branch and bound? [12M]
- 4.Explain the principles of FIFO branch and bound? [8M]
- 5. a. Explain the properties of LC-search? [6M]
  - b. Explain control abstraction of LC-branch and bound?[6M]
- 6. Briefly explain the FIFO brach and bound solution with example? [12M]
- 7. Briefly explain the LC brach and bound solution with example? [12M]
- 8. State 0/1 knapsack problem and design an algorithm of LC Branch and Bound and find the solution for the knapsack instance with any example? [12M]
- 9.Explain any one application of branch and bound? [12M]
- 10. Apply the branch-and- bound technique in solving the travelling salesman problem? [12M]

#### UNIT -V

#### NP – Hard and NP – Complete Problems, Reductions

- 1.a. How are P and NP problems related? [6M]
  - b. Differentiate Time Efficiency and Space Efficiency.[6M]
- 2. Compare NP-hard and NP-completeness? [7M]
- 3. Write the non-deterministic sorting algorithm and also analyze its complexity? [12M]
- 4. Explain the class of P and NP with example? [12M]
- 5. Differentiate between NP- complete and NP-hard problems? [12M]
- 6. State and explain cook's theorem? [12M]
- 7. Explain the strategy to prove that a problem is NP-hard? [12M]
- 8. Explain the satisifiability problem and write the algorithm? [12M]
- 9. What is halting problem explain with an example? [12M]
- 10. Briefly explain the classes NP-hard and NP-complete? [12M]
- 11. Discuss the general plan for analyzing Time efficiency of recursive algorithm.[8M]
- 12. Explain Reduction Source Problems.[7M]

Prepared by: DR. A. SWARUPA RANI, Assoc. Professor, Dept. of MCA